Estimating the Demand for Housing Attributes in Chile¹

Esteban López‡ & Dusan Paredes† [‡] University of Illinois at Urbana-Champaign [†]Universidad Católica del Norte

March 9, 2015 NARSC Conference, Washington, D.C.

¹Lincoln Institute of Land Policy 2014 Research Seminar: Land Policy and Urban Development in Latin America

CONTENTS

MOTIVATION
Context
The problem

LIT REVIEW

ECONOMIC MODEL

Data

RESULTS

CONCLUSIONS

► Chile and its *good* Housing reputation in Latin America

- ▶ Leader in reducing Housing Deficit in Latin America by direct aid (construction).
- ► Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
- ► Used as an example to encourage other DCs to embrace similar policies. Gilbert (2002)

► Chile and its *not so good* Housing reputation in Chile

- Alarming lack of Housing Quality Chamorro (2013)
- Generation of segregation, stigmatization and crowding Lambri, et al. (2011), Soto & Torche (2004)

► This has raised concerns about:

- ▶ How to increase housing quality?
- ▶ What are those attributes that consumers value the most?

MOTIVATION

•00000

- ► Chile and its *good* Housing reputation in Latin America
 - ► Leader in reducing Housing Deficit in Latin America by direct aid (construction).
 - ► Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
 - ► Used as an example to encourage other DCs to embrace similar policies. Gilbert (2002)
- ► Chile and its *not so good* Housing reputation in Chile
 - Alarming lack of Housing Quality Chamorro (2013)
 - Generation of segregation, stigmatization and crowding Lambri, et al. (2011), Soto & Torche (2004)
- ► This has raised concerns about:
 - ▶ How to increase housing quality?
 - ▶ What are those attributes that consumers value the most?

MOTIVATION

•00000

- ► Chile and its *good* Housing reputation in Latin America
 - Leader in reducing Housing Deficit in Latin America by direct aid (construction).
 - ► Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
 - ▶ Used as an example to encourage other DCs to embrace
- ▶ Chile and its *not so good* Housing reputation in Chile
- ▶ This has raised concerns about:

MOTIVATION

•00000

- ► Chile and its *good* Housing reputation in Latin America
 - Leader in reducing Housing Deficit in Latin America by direct aid (construction).
 - ► Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
 - ► Used as an example to encourage other DCs to embrace similar policies. Gilbert (2002)
- ▶ Chile and its *not so good* Housing reputation in Chile
- ▶ This has raised concerns about:

► Chile and its *good* Housing reputation in Latin America

- ▶ Leader in reducing Housing Deficit in Latin America by direct aid (construction).
- ► Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
- ► Used as an example to encourage other DCs to embrace similar policies. Gilbert (2002)

► Chile and its *not so good* Housing reputation in Chile

- ► Alarming lack of Housing Quality Chamorro (2013)
- ► Generation of segregation, stigmatization and crowding.

 Lambri, et al. (2011), Soto & Torche (2004)

► This has raised concerns about:

- ▶ How to increase housing quality?
- ▶ What are those attributes that consumers value the most?

► Chile and its *good* Housing reputation in Latin America

- ▶ Leader in reducing Housing Deficit in Latin America by direct aid (construction).
- ► Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
- ► Used as an example to encourage other DCs to embrace similar policies. Gilbert (2002)

► Chile and its *not so good* Housing reputation in Chile

- ► Alarming lack of Housing Quality Chamorro (2013)
- ► Generation of segregation, stigmatization and crowding.

 Lambri, et al. (2011), Soto & Torche (2004)

▶ This has raised concerns about:

- ▶ How to increase housing quality?
- ▶ What are those attributes that consumers value the most?

MOTIVATION

- ► Chile and its *good* Housing reputation in Latin America
 - ▶ Leader in reducing Housing Deficit in Latin America by direct aid (construction).
 - ► Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
 - ► Used as an example to encourage other DCs to embrace similar policies. Gilbert (2002)
- ► Chile and its *not so good* Housing reputation in Chile
 - ► Alarming lack of Housing Quality Chamorro (2013)
 - ► Generation of segregation, stigmatization and crowding.

 Lambri, et al. (2011), Soto & Torche (2004)
- ► This has raised concerns about:
 - ► How to increase housing quality?
 - ▶ What are those attributes that consumers value the most :

► Chile and its *good* Housing reputation in Latin America

- ▶ Leader in reducing Housing Deficit in Latin America by direct aid (construction).
- ► Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
- ► Used as an example to encourage other DCs to embrace similar policies. Gilbert (2002)

► Chile and its *not so good* Housing reputation in Chile

- ► Alarming lack of Housing Quality Chamorro (2013)
- ► Generation of segregation, stigmatization and crowding.

 Lambri, et al. (2011), Soto & Torche (2004)

► This has raised concerns about:

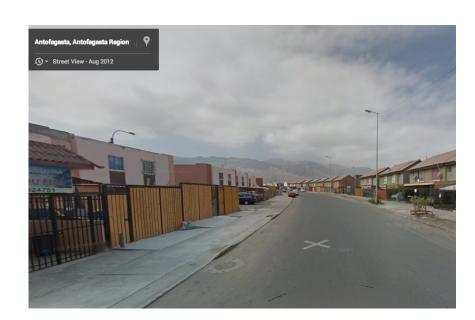
- ► How to increase housing quality?
- ▶ What are those attributes that consumers value the most:

- ► Chile and its *good* Housing reputation in Latin America
 - ▶ Leader in reducing Housing Deficit in Latin America by direct aid (construction).
 - Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
 - ► Used as an example to encourage other DCs to embrace similar policies. Gilbert (2002)
- ► Chile and its *not so good* Housing reputation in Chile
 - ► Alarming lack of Housing Quality Chamorro (2013)
 - ► Generation of segregation, stigmatization and crowding.

 Lambri, et al. (2011), Soto & Torche (2004)
- ► This has raised concerns about:
 - ► How to increase housing quality?
 - ▶ What are those attributes that consumers value the most?

- ► Chile and its *good* Housing reputation in Latin America
 - ▶ Leader in reducing Housing Deficit in Latin America by direct aid (construction).
 - ► Leader in implementing a Demand-lead Subsidy Financing System in Latin America. Ruprah, (2007)
 - ► Used as an example to encourage other DCs to embrace similar policies. Gilbert (2002)
- ► Chile and its *not so good* Housing reputation in Chile
 - ► Alarming lack of Housing Quality Chamorro (2013)
 - ► Generation of segregation, stigmatization and crowding.

 Lambri, et al. (2011), Soto & Torche (2004)
- ► This has raised concerns about:
 - ► How to increase housing quality?
 - ▶ What are those attributes that consumers value the most?



MOTIVATION

MOTIVATION

MOTIVATION

00000

A. Find out what housing attributes consumers need and how these contribute to consumer welfare

- ▶ Let us estimate the Demand for Housing Attributes to

MOTIVATION

- A. Find out what housing attributes consumers need and how these contribute to consumer welfare
 - ► Let us estimate the Demand for Housing Attributes to provide information about:
 - ▶ *Price Elasticities*: Attribute's perception as either substitutes

- A. Find out what housing attributes consumers need and how these contribute to consumer welfare
 - ► Let us estimate the Demand for Housing Attributes to provide information about:
 - ▶ *Price Elasticities*: Attribute's perception as either substitutes or complementary good

MOTIVATION

- A. Find out what housing attributes consumers need and how these contribute to consumer welfare
 - ► Let us estimate the Demand for Housing Attributes to provide information about:
 - ▶ *Price Elasticities*: Attribute's perception as either substitutes or complementary good
 - ► Income Elasticities: Attribute's classification as inferior, normal or luxury goods.

MOTIVATION

00000

A. Find out what housing attributes consumers need and how these contribute to consumer welfare

- ▶ Let us estimate the Demand for Housing Attributes to

B. Would this economic valuation of housing attributes be homogeneous across the territory?

- ► Chile has very different economic and geographic

- A. Find out what housing attributes consumers need and how these contribute to consumer welfare
 - ▶ Let us estimate the Demand for Housing Attributes to
- B. Would this economic valuation of housing attributes be homogeneous across the territory?
 - Chile has very different economic and geographic conditions varying in space.

MOTIVATION

- A. Find out what housing attributes consumers need and how these contribute to consumer welfare
 - ▶ Let us estimate the Demand for Housing Attributes to
- B. Would this economic valuation of housing attributes be homogeneous across the territory?
 - Chile has very different economic and geographic conditions varying in space.
 - ► This will impose different scenarios depending of the geographical context creating different housing markets

MOTIVATION

First wave: Restrictive assumptions and data

 Pioneers articles proposing two step procedures suggest that housing attributes are both inferior and complimentary.

King (1976) and McMillan (1979)

 Data from London to show Housing Space as the component with highest relevance.

Awan, Odling-Smee, & Whitehead (1982)

Second wave: Flexible functional forms and more detailed data

- Turning point: Almost Ideal Demand System (AIDS) and AIDS for Housing attributes (AIDS-HA)
 - Deaton & Muellbauer (1980) and Parsons (1986
- ▶ Linear version of AIDS to show how estimations vary along income levels cheshire & Sheppard (1998)
- ► AIDS-HA with schooling as a proxy for location and other variable groping in dimensions. Garcia & Raya (2011)

MOTIVATION

First wave: Restrictive assumptions and data

 Pioneers articles proposing two step procedures suggest that housing attributes are both inferior and complimentary.

King (1976) and McMillan (1979).

 Data from London to show Housing Space as the component with highest relevance.

Awan, Odling-Smee, & Whitehead (1982)

Second wave: Flexible functional forms and more detailed data

- Turning point: Almost Ideal Demand System (AIDS) and AIDS for Housing attributes (AIDS-HA)
- ► Linear version of AIDS to show how estimations vary along income levels Cheshire & Sheppard (1998)
- AIDS-HA with schooling as a proxy for location and other variable groping in dimensions. Garcia & Raya (2011)

MOTIVATION

First wave: Restrictive assumptions and data

► Pioneers articles proposing two step procedures suggest that housing attributes are both inferior and complimentary.

King (1976) and McMillan (1979).

▶ Data from London to show Housing Space as the component with highest relevance.

Awan, Odling-Smee, & Whitehead (1982)

First wave: Restrictive assumptions and data

Pioneers articles proposing two step procedures suggest

▶ Data from London to show Housing Space as the

Second wave: Flexible functional forms and more detailed data

▶ *Turning point:* Almost Ideal Demand System (AIDS) and

- ▶ Linear version of AIDS to show how estimations vary

First wave: Restrictive assumptions and data

Pioneers articles proposing two step procedures suggest that housing attributes are both inferior and complimentary.

King (1976) and McMillan (1979)

Data from London to show Housing Space as the component with highest relevance.

Awan, Odling-Smee, & Whitehead (1982

Second wave: Flexible functional forms and more detailed data

► *Turning point:* Almost Ideal Demand System (AIDS) and AIDS for Housing attributes (AIDS-HA)

Deaton & Muellbauer (1980) and Parsons (1986)

- ► Linear version of AIDS to show how estimations vary along income levels Cheshire & Sheppard (1998)
- AIDS-HA with schooling as a proxy for location and other variable groping in dimensions. Garcia & Raya (2011)

First wave: Restrictive assumptions and data

Pioneers articles proposing two step procedures suggest that housing attributes are both inferior and complimentary.

King (1976) and McMillan (1979)

Data from London to show Housing Space as the component with highest relevance.

Awan, Odling-Smee, & Whitehead (1982

Second wave: Flexible functional forms and more detailed data

► Turning point: Almost Ideal Demand System (AIDS) and AIDS for Housing attributes (AIDS-HA)

Deaton & Muellbauer (1980) and Parsons (1986)

- ► Linear version of AIDS to show how estimations vary along income levels Cheshire & Sheppard (1998)
- AIDS-HA with schooling as a proxy for location and other variable groping in dimensions. Garcia & Raya (2011)

First wave: *Restrictive assumptions and data*

Pioneers articles proposing two step procedures suggest

▶ Data from London to show Housing Space as the

Second wave: *Flexible functional forms and more detailed data*

► Turning point: Almost Ideal Demand System (AIDS) and AIDS for Housing attributes (AIDS-HA)

Deaton & Muellbauer (1980) and Parsons (1986)

- ► Linear version of AIDS to show how estimations vary along income levels Cheshire & Sheppard (1998)
- ► AIDS-HA with schooling as a proxy for location and other variable groping in dimensions. Garcia & Raya (2011)

CONTRIBUTION

MOTIVATION

- Demand system representation of the spatial heterogeneity of preferences between regional housing markets
 - ▶ Many others either do for only one specific market or

- Demand system representation of the spatial heterogeneity of preferences between regional housing markets
 - ► Many others either do for only one specific market or aggregate (and generalize for the whole country)

CONTRIBUTION

- Demand system representation of the spatial heterogeneity of preferences between regional housing markets
 - ▶ Many others either do for only one specific market or
- 2. Estimation of Confidence Intervals for Elasticity estimates
 - ▶ First time in this literature, to our knowledge.

CONTRIBUTION

- Demand system representation of the spatial heterogeneity of preferences between regional housing markets
 - ▶ Many others either do for only one specific market or
- 2. Estimation of Confidence Intervals for Elasticity estimates
 - ► First time in this literature, to our knowledge.

- Demand system representation of the spatial heterogeneity of preferences between regional housing markets
 - ▶ Many others either do for only one specific market or
- 2. Estimation of Confidence Intervals for Elasticity estimates
 - ▶ First time in this literature, to our knowledge.
- First estimation of Housing Demand for Attributes in Chile under this body of Literature
 - ▶ This would serve not only for Chile, but for other countries

ONTRIDUTION

- 1. Demand system representation of the spatial heterogeneity of preferences between regional housing markets
 - Many others either do for only one specific market or aggregate (and generalize for the whole country)
- 2. Estimation of Confidence Intervals for Elasticity estimates
 - ► First time in this literature, to our knowledge.
- 3. First estimation of Housing Demand for Attributes in Chile under this body of Literature
 - ► This would serve not only for Chile, but for other countries that have follow its path.

ECONOMIC MODEL

Maximize
$$U(Z, X)$$
 s.t. $Y = P(Z) + X$,

where:

- ► $Z = (z_1, z_2, ..., z_n)$ is a composite good of housing attributes
- ► *X* is a composite good of all other goods besides housing (numeraire)
- ▶ Y = P(Z) + X is a non-linear budget constraint dependent of prices of housing attributes (w.l.o.g)

Assumptions:

- ightharpoonup U(Z, X) is weakly separable
- ► Households are price takers and housing supply is an exogenous factor
- ► Y = P(Z) + X is the budget constraint dependent of prices of housing attributes (w.l.o.g)

Yielding a demand function such as:

$$Z = f(P_{z1}, P_{z2}, \dots, P_{zn}; Y)$$

Based on the AIDS functional form properties gives the demand system in the budget-share form:

$$w_i = \alpha_i + \sum_j \gamma_{ij} \operatorname{Log} p_i + (\beta_i + \theta_i' d_i) \operatorname{Log} \left(\frac{x}{H(1 + \rho_i' d_i)}\right)$$

where:
$$H = \alpha_0 + \sum_k \alpha_k \operatorname{Log} p_k + 0.5 \sum_k \sum_j \operatorname{Log} p_k \operatorname{Log} p_j$$
 and $\gamma_{ij} = 0.5(\gamma_{ij}^* + \gamma_{ji}^*)$, and $x = \sum_i = p_{zi}z_i$, and $w_i = \frac{p_{zi}z_i}{x}$

From which the elasticities can be recovered:

- Income: $\eta_{ie} = [(\beta_i + \theta'_i d_i)/w_i] + 1$
- ► Price (uncomp): $\eta_{ii} = \frac{1}{m} [(\beta_i + \theta'_i d_i)(\alpha_i + \sum_k \gamma_{ik} \text{Log } p_k)] 1$
- Price (comp): $\eta_{ii}^* = \eta_{ii} + \eta_{ie} * w_i$

MOTIVATION

Step 1. Hedonic Regressions: Ln(P) = f(Z, D)

- ► *Aggregation:* Regional Level & Demographics
- Output: $\frac{\partial P}{\partial Z_i} = exp(\widehat{Ln(P)} \times \hat{\beta}_j) = \hat{p}_j$

MOTIVATION

Step 1. Hedonic Regressions: Ln(P) = f(Z, D)

- ► Aggregation: Regional Level & Demographics
- Output: $\frac{\partial P}{\partial Z_i} = exp(\widehat{Ln(P)} \times \hat{\beta}_j) = \hat{p}_j$

Step 2. AIDS-HA:
$$w_i = f(\hat{p}(z), D$$

MOTIVATION

- Step 1. Hedonic Regressions: Ln(P) = f(Z, D)
 - ► Aggregation: Regional Level & Demographics
 - Output: $\frac{\partial P}{\partial Z_j} = exp(\widehat{Ln(P)} \times \hat{\beta}_j) = \hat{p}_j$
- Step 2. AIDS-HA: $w_i = f(\hat{p}(z), D$
 - Aggregation: National Level & Demographics (micro-level)
 - Output: AIDS-HA demand equation parameters
- Step 3. *Elasticities*: η_{ie} , η_{ii} , and η_{i}^*
 - Aggregation: National and Regional level
 - Demographic Groups: Household sizes Small <= 2, Medium
 = 3, and Large >= 4 members.
 - Output: Elasticity estimates with Confidence Intervals using bootstrap

MOTIVATION

Step 1. Hedonic Regressions: Ln(P) = f(Z, D)

- ► Aggregation: Regional Level & Demographics
- Output: $\frac{\partial P}{\partial Z_i} = exp(\widehat{Ln(P)} \times \hat{\beta}_j) = \hat{p}_j$

Step 2. AIDS-HA: $w_i = f(\hat{p}(z), D)$

- ► Aggregation: National Level & Demographics (micro-level)
- Output: AIDS-HA demand equation parameters

Step 3. *Elasticities*: η_{ie} , η_{ii} , and η_{ii}^*

- Aggregation: National and Regional level
- ▶ Demographic Groups: Household sizes Small <= 2, Medium = 3, and Large >= 4 members.
- Output: Elasticity estimates with Confidence Intervals using bootstrap

MOTIVATION

Step 1. Hedonic Regressions: Ln(P) = f(Z, D)

- ► *Aggregation:* Regional Level & Demographics
- Output: $\frac{\partial P}{\partial Z_i} = exp(\widehat{L}n(P) \times \hat{\beta}_i) = \hat{p}_i$

Step 2. AIDS-HA: $w_i = f(\hat{p}(z), D)$

- ► *Aggregation:* National Level & Demographics (micro-level)
- Output: AIDS-HA demand equation parameters

MOTIVATION

Step 1. Hedonic Regressions: Ln(P) = f(Z, D)

- ► *Aggregation:* Regional Level & Demographics
- Output: $\frac{\partial P}{\partial Z_i} = exp(\widehat{L}n(P) \times \hat{\beta}_i) = \hat{p}_i$

Step 2. AIDS-HA: $w_i = f(\hat{p}(z), D)$

- ► Aggregation: National Level & Demographics (micro-level)
- ► Output: AIDS-HA demand equation parameters

MOTIVATION

Step 1. Hedonic Regressions: Ln(P) = f(Z, D)

- ► *Aggregation:* Regional Level & Demographics
- Output: $\frac{\partial P}{\partial Z_i} = exp(\hat{L}n(P) \times \hat{\beta}_i) = \hat{p}_i$

Step 2. AIDS-HA: $w_i = f(\hat{p}(z), D)$

- ► Aggregation: National Level & Demographics (micro-level)
- Output: AIDS-HA demand equation parameters

Step 3. Elasticities: η_{ie} , η_{ii} , and η_{ii}^*

- ► *Aggregation*: National and Regional level
- ▶ *Demographic Groups:* Household sizes Small <= 2, Medium
- Output: Elasticity estimates with Confidence Intervals

MOTIVATION

Step 1. Hedonic Regressions: Ln(P) = f(Z, D)

- ► *Aggregation:* Regional Level & Demographics
- Output: $\frac{\partial P}{\partial Z_i} = exp(\hat{L}n(P) \times \hat{\beta}_i) = \hat{p}_i$

Step 2. AIDS-HA: $w_i = f(\hat{p}(z), D)$

- ► Aggregation: National Level & Demographics (micro-level)
- Output: AIDS-HA demand equation parameters

Step 3. Elasticities: η_{ie} , η_{ii} , and η_{ii}^*

- Aggregation: National and Regional level
- ▶ *Demographic Groups*: Household sizes Small <= 2, Medium
- Output: Elasticity estimates with Confidence Intervals

MOTIVATION

Step 1. Hedonic Regressions: Ln(P) = f(Z, D)

► *Aggregation:* Regional Level & Demographics

• Output: $\frac{\partial P}{\partial Z_i} = exp(\hat{L}n(P) \times \hat{\beta}_i) = \hat{p}_i$

Step 2. AIDS-HA: $w_i = f(\hat{p}(z), D)$

► Aggregation: National Level & Demographics (micro-level)

Output: AIDS-HA demand equation parameters

Step 3. Elasticities: η_{ie} , η_{ii} , and η_{ii}^*

Aggregation: National and Regional level

► *Demographic Groups*: Household sizes Small <= 2, Medium = 3, and Large >= 4 members.

Output: Elasticity estimates with Confidence Intervals

MOTIVATION

Step 1. Hedonic Regressions: Ln(P) = f(Z, D)

- ► *Aggregation:* Regional Level & Demographics
- Output: $\frac{\partial P}{\partial Z_i} = exp(\hat{L}n(P) \times \hat{\beta}_i) = \hat{p}_i$

Step 2. AIDS-HA: $w_i = f(\hat{p}(z), D)$

- ► Aggregation: National Level & Demographics (micro-level)
- Output: AIDS-HA demand equation parameters

Step 3. Elasticities: η_{ie} , η_{ii} , and η_{ii}^*

- ► *Aggregation:* National and Regional level
- ► *Demographic Groups*: Household sizes Small <= 2, Medium = 3, and Large >= 4 members.
- ► Output: Elasticity estimates with Confidence Intervals using bootstrap

CROS-SECTIONAL CHILEAN HOUSEHOLD SURVEY CASEN (2000-2009)

- ► Renters micro-level data for the 13 Chilean regions.
- ► House characteristics: Renting Price, Housing Size (HS),
- ▶ Household Head Characteristics: Wage, Age, Household
- ► Intensive data work in making variables' coding

CROS-SECTIONAL CHILEAN HOUSEHOLD SURVEY CASEN (2000-2009)

- ▶ Renters micro-level data for the 13 Chilean regions.
- ► House characteristics: Renting Price, Housing Size (HS), Housing Quality (HQ), Housing Features (HF), Housing Location (HL)
- ► Household Head Characteristics: Wage, Age, Household
- ► Intensive data work in making variables' coding

CROS-SECTIONAL CHILEAN HOUSEHOLD SURVEY CASEN (2000-2009)

- ► Renters micro-level data for the 13 Chilean regions.
- ► House characteristics: Renting Price, Housing Size (HS), Housing Quality (HQ), Housing Features (HF), Housing Location (HL)
- ► Household Head Characteristics: Wage, Age, Household size, etc.
- ► Intensive data work in making variables' coding compatible between years.

CROS-SECTIONAL CHILEAN HOUSEHOLD SURVEY CASEN (2000-2009)

- ▶ Renters micro-level data for the 13 Chilean regions.
- ► House characteristics: Renting Price, Housing Size (HS), Housing Quality (HQ), Housing Features (HF), Housing Location (HL)
- ► Household Head Characteristics: Wage, Age, Household size, etc.
- Intensive data work in making variables' coding compatible between years.

PRE-ESTIMATION PROCESS OF REQUIRED VARIABLES

A. Estimate Housing Quality Index (HQ)

► Logit Model of Predicting the likelihood of a house of being classified as "Good Global Quality" CELADE (1996)

- Option 1: Factor Analysis of several house features variables.
- Option 2: Composite index as the sum of the Housing Features attributes times their fitted values. Parsons (1986)
 Int(P) = mx + ∑^T · mxA + ∑^S · B · F · + S

Pre-estimation process of required variables

A. Estimate Housing Quality Index (HQ)

► Logit Model of Predicting the likelihood of a house of being classified as "Good Global Quality" CELADE (1996)

Pre-estimation process of required variables

A. Estimate Housing Quality Index (HQ)

► Logit Model of Predicting the likelihood of a house of being

- ▶ Option 1: Factor Analysis of several house features
- ▶ Option 2: Composite index as the sum of the Housing

$$Ln(P) = \alpha_0 + \sum_{j=1}^{J} \alpha_j A_j + \sum_{s=1}^{S} \beta_s F_s + \epsilon$$

$$HF_i = \sum_s \hat{\beta}_s * F_s / \text{mean}[\sum_s \hat{\beta}_s * F_s]$$

A. Estimate Housing Quality Index (HQ)

► Logit Model of Predicting the likelihood of a house of being

- ► Option 1: Factor Analysis of several house features variables.
- ▶ Option 2: Composite index as the sum of the Housing

$$Ln(P) = \alpha_0 + \sum_{j=1}^{J} \alpha_j A_j + \sum_{s=1}^{S} \beta_s F_s + HF_i = \sum_s \hat{\beta}_s * F_s / \text{mean}[\sum_s \hat{\beta}_s * F_s]$$

Pre-estimation process of required variables

A. Estimate Housing Quality Index (HQ)

► Logit Model of Predicting the likelihood of a house of being

- ▶ Option 1: Factor Analysis of several house features
- ► Option 2: Composite index as the sum of the Housing Features attributes times their fitted values. Parsons (1986)

$$Ln(P) = \alpha_0 + \sum_{j=1}^{J} \alpha_j A_j + \sum_{s=1}^{S} \beta_s F_s + e$$

$$HF_j = \sum_s \hat{\beta}_s * F_s / \text{mean} [\sum_s \hat{\beta}_s * F_s]$$

DESCRIPTIVE STATISTICS: HEDONICS

Variable	Description	min	mean	p50	max	sd
Ln(Rent Price)	Natural Logaritm of Monthly Rent Prices in CLP	9.21	11.17	11.16	12.90	0.67
HS	Housing Size: Total number of Rooms in the house	1.00	5.25	5.00	36.00	1.60
HQ	Housing Quality: Index based on floor, walls and ceilings	0.01	0.75	0.79	1.00	0.23
HL	Housing Location: Proxy by years of schooling	1.00	11.44	12.00	23.00	3.70
WasherD	Dummy for Washer Yes=1, No=0	0.00	0.72	1.00	1.00	0.45
RefrigeratorD	Dummy for Refrigerator Yes=1, No=0	0.00	0.92	1.00	1.00	0.27
LandlineD	Dummy for Landline Yes=1, No=0	0.00	0.31	0.00	1.00	0.46
WaterHeaterD	Dummy for Water Heater Yes=1, No=0	0.00	0.66	1.00	1.00	0.47
ComputerD	Dummy for Computer Yes=1, No=0	0.00	0.39	0.00	1.00	0.49
Year2003D	Dummy for Year 2003=1, otherwise=0	0.00	0.18	0.00	1.00	0.39
_Iyear_2006	Dummy for Year 2006=1, otherwise=0	0.00	0.20	0.00	1.00	0.40
_Iyear_2009	Dummy for Year 2009=1, otherwise=0	0.00	0.21	0.00	1.00	0.40
_Iyear_2011	Dummy for Year 2011=1, otherwise=0	0.00	0.25	0.00	1.00	0.43
_Iv_tipo3_2	Dummy for Apartment=1, otherwise=0	0.00	0.12	0.00	1.00	0.33
_Iv_tipo3_3	Dummy for Other house type=1, otherwise=0	0.00	0.02	0.00	1.00	0.14
zona	Dummy for Zone, Urban=1, Rural=0	0.00	0.91	1.00	1.00	0.29

Note: 33,733 Observations

MOTIVATION

DESCRIPTIVE STATISTICS: AIDS

Variable	Description	min	mean	p50	max	sd
HS	Housing Size	1.00	5.25	5.00	36.00	1.60
HQ	Housing Quality	0.01	0.75	0.79	1.00	0.23
HF	Housing Features	0.44	1.66	1.73	2.66	0.67
HL	Housing Location	1.00	11.44	12.00	23.00	3.70
z1	Household Size	1.00	3.51	3.00	15.00	1.55
s_HS	Share of expenditure in HS	0.01	0.26	0.25	0.71	0.10
s_HQ	Share of expenditure in HL	0.01	0.33	0.33	0.84	0.13
s_HF	Share of expenditure in HF	0.04	0.18	0.19	0.54	0.06
s_HL	Share of expenditure in HL	0.01	0.22	0.23	0.67	0.07
lnp1	log(Hedonic price for HS)	6.97	8.87	8.89	11.30	0.50
lnp2	log(Hedonic price for HQ)	8.84	11.08	11.09	13.69	0.67
lnp3	log(Hedonic price for HF)	7.79	9.74	9.76	11.54	0.50
lnp4	log(Hedonic price for HL)	5.93	7.97	7.99	10.06	0.54
lnw	log(Total expenditure in 4 Attributes)	8.23	11.90	11.96	14.70	0.76

Note: 33,733 Observations

ELASTICITIES WITH AND WITHOUT DEMOGRAPHICS

AIDS-HA without Demographic	AIDS-HA	without	Demoa	raphi	è
-----------------------------	---------	---------	-------	-------	---

AIDS-HA with Demographics

					Household Head = 3				
Elasticity	HS	HQ	HF	HL	Elasticity	HS	HQ	HF	HL
Income	0.7955	1.2324	1.1498	0.7620	Income	0.8081	1.2245	1.1502	0.7566
	(0.0004)	(0.0005)	(0.0002)	(0.0005)		(0.0004)	(0.0005)	(0.0002)	(0.0005)
Price					Price				
Uncompensated					Uncompensi	ated			
HS	-0.5809	-1.4216	-1.2770	-1.3325	HS	-0.2422	-0.2394	-0.1069	-0.2196
	(0.0016)	(0.0001)	(0.0004)	(0.0003)		(0.0017)	(0.0005)	(0.0003)	(0.0005)
HQ	-1.8116	-0.7183	-1.6553	-1.7699	HQ	-0.2876	-0.4989	-0.1923	-0.2457
	(0.0001)	(0.0026)	(0.0003)	(0)		(0.0007)	(0.0013)	(0.0005)	(0.0006)
HF	-1.4911	-1.5203	-0.5239	-1.4348	HF	-0.2336	-0.3226	-0.4118	-0.1822
	(0.0001)	(0.0002)	(0.0015)	(0)		(0.0003)	(0.0005)	(0.001)	(0.0003)
HL	-1.3173	-1.3784	-1.2234	-0.5437	HL	-0.2370	-0.2118	-0.0782	-0.2296
	(0.0002)	(0.0001)	(0.0003)	(0.0012)		(0.0005)	(0.0004)	(0.0002)	(0.0014)
Compensated					Compensate	ed .			
HS	-0.4279	-1.2686	-1.1240	-1.1795	HS	-0.0364	-0.0336	0.0990	-0.0138
	(0.0009)	(0.0004)	(0.0002)	(0.0003)		(-0.0384)	(-0.0353)	(0.0974)	(-0.0158)
HQ	-1.3228	-0.2296	-1.1665	-1.2811	HQ	0.1236	-0.0877	0.2190	0.1655
	(0.0009)	(0.0019)	(0.0004)	(0.0007)		(0.1211)	(-0.0886)	(0.2165)	(0.1631)
HF	-1.2486	-1.2778	-0.2814	-1.1922	HF	-0.0199	-0.1089	-0.1981	0.0315
	(0.0004)	(0.0005)	(0.0013)	(0.0003)		(-0.0211)	(-0.1103)	(-0.1995)	(0.0304)
HL	-1.2016	-1.2627	-1.1077	-0.4280	HL	-0.0677	-0.0426	0.0910	-0.0604
	(0.0003)	(0.0003)	(0.0001)	(0.0007)		(-0.0695)	(-0.044)	(0.0901)	(-0.0621)

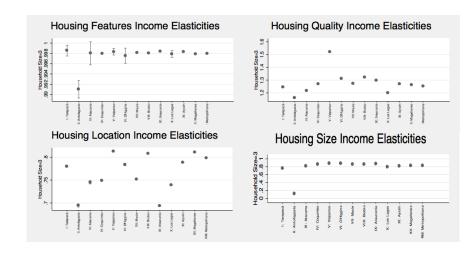
Technical Note:

Variable Housing Features (HF) was here calculated as the estimated Factor from a Factor/Principal Components Analysis between four housing features available as Dummy variables: Wather heater, Whasher, Landline, Refrigerator, Computer

- ► HS & HL: Basic Necessities (Normal goods), and Price Inelastic
- ► HQ & HF: Non-Affordable (Luxury goods), and Price Elastic

ELASTICITIES WITH DEMOGRAPHICS

AIDS-HA with Demographics


		Household Head		
Elasticity	HS	HQ	HF	HL
Income	0.8376	1.2032	1.1548	0.7448
	[0.83612,0.83909]	[1.20126,1.20523]	[1.15382,1.15579]	[0.74262,0.74689]
Price				
Uncompen	sated			
HS	-0.2188	-0.2648	-0.1192	-0.2348
	[-0.22674,-0.21079]	[-0.26717,-0.26252]	[-0.12044,-0.11804]	[-0.23731,-0.2322]
HQ	-0.2792	-0.5003	-0.1853	-0.2384
	[-0.28234,-0.27598]	[-0.50591,-0.49475]	[-0.18704,-0.18362]	[-0.24094,-0.2359]
HF	-0.2354	-0.3258	-0.4102	-0.1834
	[-0.23691,-0.23383]	[-0.32813,-0.32342]	[-0.41403,-0.40647]	[-0.18464,-0.1822]
HL	-0.2286	-0.1997	-0.0726	-0.2438
	[-0.23048,-0.22674]	[-0.20123,-0.19826]	[-0.07323,-0.07194]	[-0.24944,-0.23819]
Compensat	ted			
HS	-0.0138	-0.0599	0.0857	-0.0298
	[-0.01865,-0.00892]	[-0.0642,-0.05552]	[0.08191,0.08957]	[-0.03438,-0.02517]
HQ	0.1320	-0.0892	0.2258	0.1727
	[0.12596,0.13802]	[-0.09133,-0.08704]	[0.22115,0.23049]	[0.16743,0.17803]
HF	-0.0217	-0.1121	-0.1966	0.0302
	[-0.02445,-0.01903]	[-0.11563,-0.10865]	[-0.19931,-0.19393]	[0.02776,0.03266]
HL	-0.0584	-0.0295	0.0977	-0.0736
	[-0.06226,-0.05448]	[-0.03267,-0.02634]	[0.09509,0.10022]	[-0.07738,-0.06977]

ELASTICITIES WITH DEMOGRAPHICS

AIDS-HA with Demographics

Household Head = 4						
Elasticity	HS	HQ	HF	HL		
Income	0.7803	1.2459	1.1453	0.7684		
	[0.77917,0.78143]	[1.24493,1.24694]	[1.14489,1.1458]	[0.76738,0.7694]		
Price						
Uncompensated						
HS	-0.2623	-0.2162	-0.0956	-0.2062		
	[-0.2656,-0.25892]	[-0.21709,-0.21539]	[-0.09609,-0.09507]	[-0.20732,-0.20511]		
HQ	-0.2956	-0.4988	-0.1991	-0.2524		
	[-0.29712,-0.29406]	[-0.50184,-0.49586]	[-0.20007,-0.19804]	[-0.25365,-0.25124]		
HF	-0.2313	-0.3187	-0.4148	-0.1804		
	[-0.2321,-0.23056]	[-0.31993,-0.31752]	[-0.41687,-0.41282]	[-0.18104,-0.17986]		
HL	-0.2465	-0.2249	-0.0842	-0.2128		
	[-0.24759,-0.24542]	[-0.22568,-0.22404]	[-0.08464,-0.08383]	[-0.21606,-0.20953]		
Compensated						
HS	-0.0562	-0.0102	0.1105	-0.0002		
	[-0.05812,-0.0543]	[-0.01211,-0.00827]	[0.10873,0.11221]	[-0.00242,0.00208]		
HQ	0.1165	-0.0867	0.2131	0.1597		
	[0.11337,0.11967]	[-0.08796,-0.0855]	[0.21068,0.21545]	[0.15704,0.1623]		
HF	-0.0171	-0.1045	-0.2006	0.0338		
	[-0.01866,-0.01554]	[-0.10623,-0.10275]	[-0.20205,-0.19917]	[0.03251,0.03506]		
HL	-0.0789	-0.0573	0.0834	-0.0452		
	[-0.08082,-0.077]	[-0.05905,-0.05546]	[0.08213,0.08461]	[-0.04741,-0.04297]		

ELASTICITIES WITH HHS=3, AT THE REGIONAL LEVEL

- ► Demand Elasticities are crucial to understand consumer preferences
- ► HS and HL are basic necessities and people will be less willing to trade them.
- ► HQ and HF are seen as luxuries and they are easily given up to price changes.
- ► This results are robust and consistent across Household Sizes, with small but significant differences
- ► There seem to be spatial heterogeneity, but results need further confirmation.

- ► Demand Elasticities are crucial to understand consumer preferences
- ► HS and HL are basic necessities and people will be less willing to trade them.
- ► HQ and HF are seen as luxuries and they are easily given up to price changes.
- ► This results are robust and consistent across Household Sizes, with small but significant differences
- ► There seem to be spatial heterogeneity, but results need further confirmation.

- ► Demand Elasticities are crucial to understand consumer preferences
- ► HS and HL are basic necessities and people will be less willing to trade them.
- ► HQ and HF are seen as luxuries and they are easily given up to price changes.
- ► This results are robust and consistent across Household Sizes, with small but significant differences
- ► There seem to be spatial heterogeneity, but results need further confirmation.

- ► Demand Elasticities are crucial to understand consumer preferences
- ► HS and HL are basic necessities and people will be less willing to trade them.
- ► HQ and HF are seen as luxuries and they are easily given up to price changes.
- ► This results are robust and consistent across Household Sizes, with small but significant differences
- ► There seem to be spatial heterogeneity, but results need further confirmation.

- ► Demand Elasticities are crucial to understand consumer preferences
- ► HS and HL are basic necessities and people will be less willing to trade them.
- ► HQ and HF are seen as luxuries and they are easily given up to price changes.
- ► This results are robust and consistent across Household Sizes, with small but significant differences
- ► There seem to be spatial heterogeneity, but results need further confirmation.

- ► Demand Elasticities are crucial to understand consumer preferences
- ► HS and HL are basic necessities and people will be less willing to trade them.
- ► HQ and HF are seen as luxuries and they are easily given up to price changes.
- ► This results are robust and consistent across Household Sizes, with small but significant differences
- ► There seem to be spatial heterogeneity, but results need further confirmation.

- ► Demand Elasticities are crucial to understand consumer preferences
- ► HS and HL are basic necessities and people will be less willing to trade them.
- ► HQ and HF are seen as luxuries and they are easily given up to price changes.
- ► This results are robust and consistent across Household Sizes, with small but significant differences
- ► There seem to be spatial heterogeneity, but results need further confirmation.

- ► Households identify this two attributes as still a concern in Chile → Larger Houses, even if this means less quantity.
- Building new houses need to consider better location or higher connectivity to work places.
- We need more studies that expand our understanding of regional housing markets and its dynamics with labor markets.

- ► Households identify this two attributes as still a concern in Chile → Larger Houses, even if this means less quantity.
- Building new houses need to consider better location or higher connectivity to work places.
- We need more studies that expand our understanding of regional housing markets and its dynamics with labor markets.

- ► Households identify this two attributes as still a concern in Chile → Larger Houses, even if this means less quantity.
- Building new houses need to consider better location or higher connectivity to work places.
- We need more studies that expand our understanding of regional housing markets and its dynamics with labor markets.

- ► Households identify this two attributes as still a concern in Chile → Larger Houses, even if this means less quantity.
- Building new houses need to consider better location or higher connectivity to work places.
- We need more studies that expand our understanding of regional housing markets and its dynamics with labor markets.

Estimating the Demand for Housing Attributes in Chile²

Esteban López[‡] & Dusan Paredes[†] [‡] University of Illinois at Urbana-Champaign [†]Universidad Católica del Norte

March 9, 2015 NARSC Conference, Washington, D.C.

²Lincoln Institute of Land Policy 2014 Research Seminar: Land Policy and Urban Development in Latin America